Abstract

Carbachol, a muscarinic receptor agonist, produced three distinct spontaneous oscillations in the CA3 region of rat hippocampal slices. Carbachol concentrations in the 4-13 microM range produced regular synchronized CA3 discharges at 0.5-2 Hz (carbachol-delta). Higher concentrations (13-60 microM) produced short episodes of 5-10 Hz (carbachol-theta) oscillations separated by nonsynchronous activity. Concentrations of carbachol ranging from 8-25 microM also produced irregular episodes of high-frequency discharges (carbachol-gamma, 35-70 Hz), in isolation or mixed with carbachol-theta and carbachol-delta. At carbachol concentrations sufficient to induce carbachol-theta, low concentrations of APV reversibly transformed carbachol-theta into carbachol-delta. Higher concentrations of D,L-2-amino-5-phosphonopentanoic acid (APV) reversibly and completely blocked carbachol-theta. A systematic study of the effects of carbachol shows that the frequency of spontaneous oscillations depended nonlinearly on the level of muscarinic activation. Field and intracellular recordings from CA1 and CA3 pyramidal cells and interneurons during carbachol-induced rhythms revealed that the hippocampal circuitry preserved in the slice was capable of spontaneous activity over the range of frequencies observed in vivo and suggests that the presence of these rhythms could be under neuromodulatory control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.