Abstract

To investigate the role of cholinergic anti-inflammatory pathway (CAP) in neuro-regulation of inflammatory and immune response in the early stage of sepsis. Sixty-four SD rats were randomly divided into control Group (n=8) with normal feeding without any treatment; sham operation group (n=8) with laparotomy but without cecal ligation and puncture (CLP), followed by intraperitoneal injection 50 mg/kg piperacillin 3 times a day for 3 consecutive days; and sepsis group (n=48) with CLP-induced sepsis. The rat models of sepsis were randomized into model groups (n=16) with intraperitoneal injection of piperacillin (50 mg/kg) and normal saline (1 mL/100 g) for 3 times a day for 3 days; GTS-21 group (n=16) with additional intraperitoneal injection of 4 mg/kg GTS-21 (once a day for 3 days); and methyllycaconitine (MLA) group (n=16) with intraperitoneal injection of MLA (4.8 mg/kg) in addition to piperacillin (once a day for 3 days). Murine Sepsis Score (MSS) of the rats and short-range HRV analysis were recorded. Three days later, the rats were sacrificed and serum levels of TNF-α, IL-1α, IL-10, IL-6, HMGB1, and sCD14 were measured with ELISA. The percentages of CD4+CD25+ Treg and TH17 lymphocytes and their ratios were measured using flow cytometry. Compared with the control rats, the septic rats had significantly increased MSS scores and lowered HRV indexes (SDNN, RMSSD, HF, SD1, and SD2; P < 0.05); treatment with GTS-21 significantly decreased while MLA increased MSS scores (P < 0.05), but neither of them obviously affected HRV of the rats. Serum levels TNF-α, IL-1α, IL-10, IL-6, HMGB1, and sCD14 and the percentages of CD4+CD25+ Treg and TH17-positive lymphocytes were significantly higher and Treg/TH17 ratio was significantly lower in the septic rats compared with those in the control group (P < 0.05); treatment with GTS-21 significantly decreased the levels of serum levels of TNF-α, IL-1α, IL-6, HMGB1, and sCD14 and TH17 lymphocyte percentage (P < 0.05), whereas MLA treatment significantly increased serum levels of TNF-α, IL-1α, IL-10, IL-6, HMGB1, and sCD14 and the percentages of CD4+ CD25+ Treg and TH17-positive lymphocytes and decreased Treg/TH17 ratio in the septic rats (P < 0.05). CAP plays negative regulatory role in early inflammatory and immune response to sepsis, and some of the HRV indicators can well reflect the regulatory effect of CAP on inflammation and immunity in the septic rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.