Abstract

Although cigarette smoking is one of the major risk factors for atherosclerosis and coronary heart disease, the precise mechanisms of its adverse effects have not been fully elucidated. We incubated low density lipoprotein (LDL) with cigarette smoke (CS) extract and examined the incorporation of the lipoprotein by macrophages in vitro. When incubated with macrophages, LDL pretreated with CS extract (100 micrograms/ml) stimulated cholesteryl [14C]oleate synthesis approximately equal to 12.5-fold that with unmodified LDL and transformed macrophages to cells rich in lipid droplets positively stained with oil red O. Enhancement in cholesteryl ester synthesis was dependent on the concentration of CS-modified LDL and exhibited saturation kinetics. When subjected to electrophoreses, CS-modified LDL migrated to a more anionic position than did unmodified LDL and showed extensive fragmentation of apolipoprotein B. This LDL modification depended upon the incubation time and concentration of the CS extract. Superoxide dismutase inhibited modification of LDL by 52%, suggesting that superoxide anion is, at least in part, involved. These results suggest that CS extract alters LDL into a form recognized and incorporated by macrophages. Such modification if it occurs in vivo, could explain the increased incidence of atherosclerosis and coronary heart disease in smokers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.