Abstract

Sustained pulmonary vasoconstriction and excessive pulmonary vascular remodelling are two major causes of elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension. The purpose of this study was to investigate whether chloroquine induced relaxation in the pulmonary artery (PA) and attenuates hypoxia-induced pulmonary hypertension (HPH). Isometric tension was measured in rat PA rings pre-constricted with phenylephrine or high K+ solution. PA pressure was measured in mouse isolated, perfused and ventilated lungs. Fura-2 fluorescence microscopy was used to measure cytosolic free Ca2+ concentration levels in PA smooth muscle cells (PASMCs). Patch-clamp experiments were performed to assess the activity of voltage-dependent Ca2+ channels (VDCCs) in PASMC. Rats exposed to hypoxia (10% O2 ) for 3weeks were used as the model of HPH or Sugen5416/hypoxia (SuHx) for in vivo experiments. Chloroquine attenuated agonist-induced and high K+ -induced contraction in isolated rat PA. Pretreatment with l-NAME or indomethacin and functional removal of endothelium failed to inhibit chloroquine-induced PA relaxation. In PASMC, extracellular application of chloroquine attenuated store-operated Ca2+ entry and ATP-induced Ca2+ entry. Furthermore, chloroquine also inhibited whole-cell Ba2+ currents through VDCC in PASMC. In vivo experiments demonstrated that chloroquine treatment ameliorated the HPH and SuHx models. Chloroquine is a potent pulmonary vasodilator that may directly or indirectly block VDCC, store-operated Ca2+ channels and receptor-operated Ca2+ channels in PASMC. The therapeutic potential of chloroquine in pulmonary hypertension is probably due to the combination of its vasodilator, anti-proliferative and anti-autophagic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.