Abstract

Demonstrated here is the use of conducting polymers as active materials in the positive electrodes of rechargeable aluminum-based batteries operating at room temperature. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative electrode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions. Cycling of the conducting polymer electrodes occurred via the electrochemical insertion and removal of these anions. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with electrode capacities at near-theoretical levels (30–100 mAh g–1) and Coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated to be 44 Wh kg–1 relative to the total mass of active components. This energy density is competitive with state-of-the-art bat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.