Abstract

Bisphenol A (BPA) is considered an endocrine-disrupting compound and can cause toxicological effects, even at low doses. The development of sensitive and reliable sensors that would allow the detection of such contaminant is highly pursued. Herein, we report an electrochemical sensing strategy based on a simple and low-cost nanocomposite film sensor platform for BPA detection. The platform was developed by modifying a fluorine-doped tin oxide (FTO) electrode with layer-by-layer (LbL) films of chitosan (Chi) and gold nanoparticles functionalized with a polythiophene derivative (AuNPs:PTS). The growth of the Chi/AuNPs:PTS LbL films was monitored by UV–Vis spectroscopy. Electrochemical characterization revealed that the three-bilayer film exhibited the highest electrocatalytic performance and differential-pulse voltammetry (DPV) measurements demonstrated that the modified electrode was suitable for BPA detection through a quasi-reversible and adsorption-controlled electrochemical oxidation and reduction process. The developed sensor exhibited a linear response range from 0.4 to 20 μmol L−1, with a detection limit of 0.32 μmol L−1. The sensor showed good reproducibility with relative standard deviations of 2.12% and 3.73% to intra- and inter-electrode, respectively. Furthermore, the platform demonstrated to be suitable to detect BPA in real water samples, as well as selective for BPA detection in solutions with 100-fold excess of common interfering compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.