Abstract
Cardiac tissue engineering (CTE) remains a great challenge to construct a cell-inductive scaffold that has positive effects on cardiac cell behaviors and cardiac tissue repair. In this study, we for the first time demonstrated that Si ions evidently stimulated the expression of cardiac-specific genes and proliferation of neonatal rat cardiomyocytes (NRCMs) at concentration ranges of 0.13-10.78 ppm. Accordingly, the optimized concentrations of calcium silicate (CS) were incorporated into the controllable aligned chitosan electrospun nanofibers, constructing the composite cardiac patch scaffolds. These scaffolds showed synergistic effect of bioactive chemical and structural signals on both cardiomyocytes and endothelial cells with aligned cell morphology and enhanced viability and function characterized by upregulated expressions of cardiac and angiogenic specific markers, improved myofilament structure, and better Ca2+ transients of NRCMs as compared to the scaffolds free of CS component or with disordered structures. The in vivo studies further demonstrated that the NRCM-seeded aligned CS/chitosan cardiac patch evidently improved cardiac function via limiting the scar area and promoting angiogenesis in postmyocardial infarction rats. Conclusively, our study highlights the potential application of bioactive ions and nanostructured biomaterials in CTE, and the CS/chitosan composite cardiac patch may be a promising scaffold for repair of infarcted myocardium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.