Abstract

Aim Nucleotide analogues such as Azidothymidine-triphosphate (AZT-TP), the active form of Zidovudine, display an important pharmacological activity for the treatment of HIV. The administration of these nucleotide analogues would bypass the intracellular phosphorylation which can be a metabolic bottleneck. This possibility is however limited by their instability in physiological conditions, and furthermore their hydrophilicity restricts their access to the target cells. Several nanocarriers have been proposed so far for the encapsulation of these molecules, but their applications are limited due to the low drug loading achieved. Our strategy proposes the use of chitosan, a biocompatible and hydrophilic polysaccharide which is known to form nanoparticles through complexation with TPP; in contrast with previous methods, in our case the drug itself will be the driving force for the formation of nanoparticles [1].

Highlights

  • Open AccessChitosan nanoparticles for the intracellular delivery of triphosphate nucleotide analogues Giovanna Giacalone*, Elias Fattal, Hervé Hillaireau

  • Aim Nucleotide analogues such as Azidothymidine-triphosphate (AZT-TP), the active form of Zidovudine, display an important pharmacological activity for the treatment of HIV

  • Material and methods Different molar ratios between chitosan and AZT-TP have been tested in order to study the formation of nanoparticles; some selected ratios have been evaluated for their size, surface properties, drug encapsulation and loading

Read more

Summary

Open Access

Chitosan nanoparticles for the intracellular delivery of triphosphate nucleotide analogues Giovanna Giacalone*, Elias Fattal, Hervé Hillaireau. Aim Nucleotide analogues such as Azidothymidine-triphosphate (AZT-TP), the active form of Zidovudine, display an important pharmacological activity for the treatment of HIV. The administration of these nucleotide analogues would bypass the intracellular phosphorylation which can be a metabolic bottleneck. This possibility is limited by their instability in physiological conditions, and their hydrophilicity restricts their access to the target cells. Our strategy proposes the use of chitosan, a biocompatible and hydrophilic polysaccharide which is known to form nanoparticles through complexation with TPP; in contrast with previous methods, in our case the drug itself will be the driving force for the formation of nanoparticles [1]

Material and methods
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.