Abstract

A series of chitosan (CS)-konjac glucomannan (KGM) foams with excellent thermal insulation property has been prepared using a directional freezing method, which exhibit high strain recovery, excellent piezoelectric generation and sensing properties. Layered lamellar or honeycomb morphologies in CS-KGM foams attributes a low thermal conductivity coefficient of ca. 0.03 W/(m·K). Bridge-like structure that mainly observed in CS-KGM foams from horizontal freezing endows them with excellent compression recovery performance even after 200 compression cycles. This along with piezoelectricity of CS contributes a long-lasting piezoelectric generation performance, ranging from 0.809 to 2.460 V during compression cycle process. Piezoelectric signals generated from pressing with certain strain and rate, finger taping and hand grasping can be sensed profoundly by CS-KGM. As thus, fully renewable source-based CS-KGM foams with outstanding thermal insulation and piezoelectric performance shows great potential in application as wearable thermal insulation and piezoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.