Abstract
This research aimed to synthesize Chitosan/PVA-blank and a series of Cs/PVA/Sepolite based pH-sensitive membranes using a solution casting process. The synthesized Cs/PVA-blank and Cs/PVA/Sep based membranes were investigated via SEM, FTIR, XRD, and TGA techniques. The SEM results of Cs/PVA/Sep based membrane reveal that the hydrolytic stability and strength were improved in acidic and basic media owing to the incorporation of sepiolite content into chitosan. The characteristic band at 3741 cm−1 in the FTIR spectra of the Cs/PVA/Sep membrane confirmed the successful synthesis. The obtained XRD results showed higher d-spacing for Cs/PVA/Sep membranes as compared to the Cs/PVA-blank membranes owing to the intercalation of chitosan in the interlayer spacing of the sepiolite. The obtained TGA results show higher thermally stability for Cs/PVA/Sep membrane as compared to the Cs/PVA-blank sample due to the interaction of sepiolite content with the chitosan matrix. The obtained hydrolytic and swelling studies revealed that the Cs/PVA/Sep membrane displayed enhanced stability in basic and neutral media while showing minimum swelling in an acidic medium. The water uptake ability was checked for Cs/PVA/-blank and Cs/PVA/Sep-60% membrane and the results exhibited that the Cs/PVA/-blank membrane had maximum water uptake value as compared to the Cs/PVA/Sep-60% membrane. While those with a considerable amount of filler had the lowest water uptake values. As Sepolite content increased, the water uptake % values decreases because of weakness in H-bonding (of hydrophilic groups) and due to intercalation in Sepolite layers during polymer formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.