Abstract

Suitable nanometer roughness favors interactions between drugs and carriers, and it is a promising approach to enhance the aerosolization performance of carrier-based dry powder inhalers (DPIs). In this study, by altering the molecular migration rates, chitosan-based binary carriers (CBBCs) with nanometer roughness were fabricated for DPIs. Comprehensive physicochemical characterizations were conducted to elucidate the formation mechanism of the CBBCs. It was hypothesized that different constituent ratios in the formulations would result in different assembling of the particles and diverse roughness scales. The fine particle fractions (FPF, approximately 40~60%) of nanometer roughness CBBC-based DPI formulations were satisfactory, demonstrating the enhancement of the in vitro aerodynamic performance. The positive correlation (R2 = 0.9883) between the nanometer roughness and FPF was revealed, and the surface roughness of 20nm might achieve the best aerosolization performance. CBBCs (optimal formulations) showed no difference in cytotoxicity on A549 and Calu-3 cells (p > 0.05). Additionally, the increased Cmax and AUC0-8h of the formulation with the nanometer roughness (p < 0.05) were observed in pharmacokinetic studies, which resulted from the improved in vivo aerosolization performance. In summary, the CBBCs were a prospective tool to improve the in vitro and in vivo aerosolization performance of DPIs. Graphical abstract ᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.