Abstract

Chemotaxis of the marine bacterium Vibrio furnissii to chitin oligosaccharides has been described (Bassler, B. L., Gibbons, P. J., Yu, C., and Roseman, S. (1991) J. Biol. Chem. 266, 24268-24275). Some steps in catabolism of the oligosaccharides are reported here. GlcNAc, (GlcNAc)2, and (GlcNAc)3 are very rapidly consumed by intact cells, about 320 nmol of GlcNAc equivalents/min/mg of protein. (GlcNAc)4 is utilized somewhat more slowly. During these processes, there is virtually no release of hydrolysis products by the cells. The oligosaccharides enter the periplasmic space (via specific porins?) and are hydrolyzed by a unique membrane-bound endoenzyme (chitodextrinase) and an exoenzyme (N-acetyl-beta-glucosaminidase; beta-Glc-NAcidase). The genes encoding these enzymes have been cloned and expressed in Escherichia coli. The chitodextrinase cleaves soluble oligomers, but not chitin, to the di- and trisaccharides, while the periplasmic beta-GlcNAcidase hydrolyzes the GlcNAc termini from the oligomers. The end products in the periplasm, GlcNAc and (GlcNAc)2 (possibly (GlcNAc)3) are catabolized as follows. (a) Disaccharide pathway, A (GlcNAc)2 permease is apparently expressed by Vibrio furnissii. Translocated (GlcNAc)2 is rapidly hydrolyzed by a soluble, cytosolic beta-GlcNAcidase, and the GlcNAc is phosphorylated by an ATP-dependent, constitutive kinase to GlcNAc-6-P. (b) Monosaccharide pathway, Periplasmic GlcNAc is taken up by Enzyme IINag of the phosphoenolpyruvate:glycose phosphotransferase system, yielding GlcNAc-6-P, the common intermediate for both pathways. Finally, GlcNAc-6-P----Ac- + GlcNH2-6-P----Fru-6-P + NH3. (GlcNAc)2 is probably the "true" inducer of the chitin degradative enzymes described in this report and, depending on its concentration in the growth medium, differentially induces the periplasmic and cytosolic beta-GlcNAcidases. The disaccharide pathway appears to be the most important when the cells are confronted with low concentrations of the oligomers (e.g. in chemotaxis swarm plates). The relative activities of the induced enzymes suggest that the rate-limiting steps in oligosaccharide catabolism are the glycosidase activities in the periplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.