Abstract

The chiral vanadyl salen complex was immobilized into mesoporous silica by a covalent grafting method using 3-aminopropyltriethoxysilane as a reactive surface modifier. The formation and integrity of the complex have been confirmed by FT-IR, UV–vis and BET measurements and the complex was tested in the asymmetric oxidation of sulfide to sulfoxide using H2O2 as oxidant. The immobilized complex showed better catalytic activity than the neat complex, while the neat complex has deactivated in the reaction. The combination of the heterogenized catalyst, H2O2 and CH2Cl2 as solvent offers a selective catalytic system for oxidation of sulfide to sulfoxide with a low but significant enantioselectivity in the range of 8–10% ee. In addition, the heterogenized catalyst could be easily separated from the products and reused.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.