Abstract

The development of the thermally activated delayed fluorescence (TADF) emitters with circularly polarized luminescence (CPL), particularly those exhibiting deep-blue emission is still a formidable challenge. In this work, we reported a simple and easily accessed molecular design strategy for deep-blue circularly polarized TADF (CP-TADF) enantiomers. Two chiral compounds, namely (S)-NPE-AcDPS and (R)-NPE-AcDPS, were successfully designed and synthesized, which featured concurrently TADF, CPL, and aggregation-induced enhanced emission (AIEE) properties. The CPL exhibited a maximum gPL value of 3.0 × 10−4. These emitters exhibited deep blue emission peaking at 451 nm in doped film with a high photoluminescence of 86% and a small singlet-triplet splitting of 0.05 eV. Furthermore, the deep blue OLED based on (S)-NPE-AcDPS demonstrated a high external quantum efficiency (EQE) up to 18.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.