Abstract

Succinoglycan, a sinorhizobial exopolysaccharide produced by Sinorhizobium meliloti, is composed of an octasaccharide subunit. S. meliloti produces both high-molecular-weight and low-molecular-weight ( M r < 10,000) succinoglycans which consist of monomers, dimers, or trimers. Succinoglycan monomers were isolated and further purified in the monomer series (M1, M2, and M3) by the degree of succinylation. We used sinorhizobial octasaccharides (M1, M2, and M3) as chiral additives in capillary electrophoresis (CE) for chiral separation of catechin and also as chiral shift reagents with 13C NMR spectroscopy for chiral discrimination of catechin. Chiral separation of catechin took place when sinorhizobial octasaccharides (M2 and M3) were added to the background electrolyte (BGE) in CE. NMR signal splittings were also observed in the interactions of sinorhizobial octasaccharides with the enantiomers of catechin. Both chiral separation and discrimination of catechin depend on the presence of succinate substituents of the linear monomeric octasaccharide in CE and NMR spectroscopy, suggesting that succinylation of sinorhizobial octasaccharide is decisive for the effective chiral separation and discrimination of catechin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.