Abstract

The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.