Abstract

A generalized Lagrangian for the description of hadronic matter based on the linear $SU(3)_L \times SU(3)_R$ $\sigma$-model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. We discuss the difficulties and possibilities to construct a chiral invariant baryon-meson interaction that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the Walecka-model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.