Abstract

The creation of new chiral ligands capable of providing high stereocontrol in metal-catalyzed reactions is crucial in modern organic synthesis. The production of bioactive molecules as single enantiomers is increasingly required, and asymmetric catalysis with metal complexes constitutes one of the most efficient synthetic strategies to access optically active compounds. Herein we offer a historical overview on the development of chiral derivatives of the ubiquitous cyclopentadienyl ligand (CpX ), and detail their successful application in a broad range of metal-catalyzed transformations. Those include the functionalization of challenging C-H bonds and beyond, giving access to an extensive catalogue of valuable chiral molecules. A critical comparison of the existing ligand families, their design, synthesis, and complexation to different metals is also provided. In addition, future research directions are discussed to further enhance the performance and application of CpX ligands in enantioselective catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.