Abstract
Most current research and applications on Pinyin to Chinese word conversion employs a hidden Markov model (HMMs) which in turn uses a character-based language model. The reason is because Chinese texts are written without word boundaries. However in some tasks that involve the Pinyin to Chinese conversion, such as Chinese text proofreading, the original Chinese text is known. This enables us to extract the words and a word-based language model can be developed. In this paper we compare the two models and come to a conclusion that using word-based bi-gram language model achieve higher conversion accuracy than character-based bi-gram language model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.