Abstract

Two new chimeric flaviviruses were constructed from full-length cDNAs that contained tick-borne encephalitis virus (TBEV) CME or ME structural protein genes and the remaining genes derived from dengue type 4 virus (DEN4). Studies involving mice inoculated intracerebrally with the ME chimeric virus indicated that it retained the neurovirulence of its TBEV parent from which its pre-M and E genes were derived. However, unlike parental TBEV, the chimeric virus did not produce encephalitis when mice were inoculated peripherally, indicating a loss of neuroinvasiveness. In the present study, the ME chimeric virus (vME) was subjected to mutational analysis in an attempt to reduce or ablate neurovirulence measured by direct inoculation of virus into the brain. We identified three distinct mutations that were each associated independently with a significant reduction of mouse neurovirulence of vME. These mutations ablated (i) the TBEV pre-M cleavage site, (ii) the TBEV E glycosylation site, or (iii) the first DEN4 NS1 glycosylation site. In contrast, ablation of the second DEN4 NS1 glycosylation site or the TBE pre-M glycosylation site or amino acid substitution at two positions in the TBEV E protein increased neurovirulence. The only conserved feature of the three attenuated mutants was restriction of virus yield in both simian and mosquito cells. Following parenteral inoculation, these attenuated mutants induced complete resistance in mice to fatal encephalitis caused by the highly neurovirulent vME.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.