Abstract

Staphylococcus aureus expresses several hemolytic pore-forming toxins (PFTs), which are all commonly composed of three domains: cap, rim and stem. PFTs are expressed as soluble monomers and assemble to form a transmembrane β-barrel pore in the erythrocyte cell membrane. The stem domain undergoes dramatic conformational changes to form a pore. Staphylococcal PFTs are classified into two groups: one-component α-hemolysin (α-HL) and two-component γ-hemolysin (γ-HL). The α-HL forms a homo-heptamer, whereas γ-HL is an octamer composed of F-component (LukF) and S-component (Hlg2). Because PFTs are used as materials for nanopore-based sensors, knowledge of the functional properties of PFTs is used to develop new, engineered PFTs. However, it remains challenging to design PFTs with a β-barrel pore because their formation as transmembrane protein assemblies requires large conformational changes. In the present study, aiming to investigate the design principles of the β-barrel formed as a consequence of the conformational change, chimeric mutants composed of the cap/rim domains of α-HL and the stem of LukF or Hlg2 were prepared. Biochemical characterization and electron microscopy showed that one of them assembles as a heptameric one-component PFT, whereas another participates as both a heptameric one- and heptameric/octameric two-component PFT. All chimeric mutants intrinsically assemble into SDS-resistant oligomers. Based on these observations, the role of the stem domain of these PFTs is discussed. These findings provide clues for the engineering of staphylococcal PFT β-barrels for use in further promising applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.