Abstract

Computer-empowered detection of possible faults for Heating, Ventilation and Air-Conditioning (HVAC) subsystems, e.g., chillers, is one of the most important applications in Artificial Intelligence (AI) integrated Internet of Things (IoT). The cyber-physical system greatly enhances the safety and security of the working facilities, reducing time, saving energy and protecting humans’ health. Under the current trends of smart building design and energy management optimization, Automated Fault Detection and Diagnosis (AFDD) of chillers integrated with IoT is highly demanded. Recent studies show that standard machine learning techniques, such as Principal Component Analysis (PCA), Support Vector Machine (SVM) and tree-structure-based algorithms, are useful in capturing various chiller faults with high accuracy rates. With the fast development of deep learning technology, Convolutional Neural Networks (CNNs) have been widely and successfully applied to various fields. However, for chiller AFDD, few existing works are adopting CNN and its extensions in the feature extraction and classification processes. In this study, we propose to perform chiller FDD using a CNN-based approach. The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods. First, the CNN-based approach does not require the feature selection/extraction process. Since CNN is reputable with its feature extraction capability, the feature extraction and classification processes are merged, leading to a more neat AFDD framework compared to traditional approaches. Second, the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.