Abstract

Taxanes are first line drugs for treating prostate cancer recurrence after the failure of anti-androgen therapy. There is a need to make taxanes more effective since they only provide palliative benefit. Exploiting endoplasmic reticulum (ER) stress death signaling to enhance drug efficacy has not been delineated. Human PC-3 cells were used as a model of hormone refractory prostate cancer. Thapsigargin and methylseleninic acid (MSA) were examined as sensitizers. Thapsigargin is a classic ER stress inducer. The activity of MSA in inducing ER stress has recently been studied by our group. The efficacy of single drug and the various combinations was evaluated by measuring apoptosis with a cell death ELISA kit. Thapsigargin increased the cell killing potency of paclitaxel or docetaxel by 10- to 12-fold, while MSA caused a 5- to 8-fold increase. Since thapsigargin is not used clinically because of its toxicity, the follow-up experiments were done with MSA. To test the hypothesis that a threshold level of ER stress is crucial to chemotherapeutic sensitization, three different approaches designed to dampen the severity of ER stress induced by MSA were examined. Lowering ER stress consistently attenuated the efficacy of MSA/taxane. GADD153 is a pro-apoptotic transcription factor which is up-regulated during ER stress. Knocking down GADD153 by siRNA also reduced the cell killing effect of MSA/taxane. Both the intrinsic and extrinsic apoptotic pathways were involved in the sensitization mechanism. Our study supports the idea that marshalling ER stress apoptotic response is conducive to chemotherapeutic sensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.