Abstract
The promiscuity of de novo designed enzymes provides a privileged platform for diverse abiological reactions. In this work, we report the first example of a nitroolefin synthase that catalyzes the Henry condensation between aromatic aldehydes and nitromethane. Significant catalytic activity was discovered in the computationally designed and evolved carboligase RA95.5-8, and mutations around the active site were shown to improve the reaction rate, demonstrating the potential to optimize the enzyme by directed evolution. This novel nitroolefin synthase could participate in complex biological cascades, whereby the highly tunable chemoselectivity could afford useful synthetic building blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.