Abstract

We have demonstrated a binary chemoselective gas sensor using a combination of plasmonic nanohole arrays and a voltage-directed assembly of diazonium chemistry. The employment of a voltage-directed functionalization allows for the realization of a multiplexed sensor. The device was read optically and was fabricated using a combination of electron-beam and conventional lithography; it contains several regions each electrically isolated from each other. We used calibrated gas dosage delivery to confirm the selectivity of the sensor and observed reversible spectral shifts of several nm upon gas exposure. The resulting spectral shift indicates the potential for use in chemical arrayed detection for low concentration gas sensing

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.