Abstract

Proteins can undergo oxidative cleavage by in vitro metal-catalyzed oxidation (MCO) in either the α-amidation or the diamide pathway. However, whether oxidative cleavage of polypeptide-chain occurs in biological systems remains unexplored. We describe a chemoproteomic approach to globally and site-specifically profile electrophilic protein degradants formed from peptide backbone cleavages in human proteomes, including the known N-terminal α-ketoacyl products and >1000 unexpected N-terminal formyl products. Strikingly, such cleavages predominantly occur at the carboxyl side of lysine (K) and arginine (R) residues across native proteomes in situ, while MCO-induced oxidative cleavages randomly distribute on peptide/protein sequences in vitro. Furthermore, ionizing radiation-induced reactive oxygen species (ROS) also generate random oxidative cleavages in situ. These findings suggest that the endogenous formation of N-formyl and N-α-ketoacyl degradants in biological systems is more likely regulated by a previously unknown mechanism with a trypsin-like specificity, rather than the random oxidative damage as previously thought. More generally, our study highlights the utility of quantitative chemoproteomics in combination with unrestricted search tools as a viable strategy to discover unexpected chemical modifications of proteins labeled with active-based probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.