Abstract

An effect-directed analysis (EDA) of fresh and artificially weathered (evaporated, photooxidized) samples of North Sea crude oil and residual heavy fuel oil is presented. Aliphatic, aromatic, and polar oil fractions were tested for the presence of aryl hydrocarbon receptor (AhR) agonist and androgen receptor (AR) antagonist, demonstrating for the first time the AR antagonist effects in the aromatic and, to a lesser extent, polar fractions. An extension of the typical EDA strategy to include an N-way partial least-squares (N-PLS) model capable of relating the comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) data set to the bioassay data obtained from normal-phase LC fractions is proposed. The predicted AhR binding effects in the fresh and artificially weathered aromatic oil fractions facilitated the identification of alkyl-substituted three- and four-ring aromatic systems in the active fractions through the weighting of their contributions to the observed effects. A N-PLS chemometric model is demonstrated as a potentially useful strategy for future EDA studies that can streamline the compound identification process and provide additional reduction of samples' complexity. The AhR binding effects of the suspected compounds predicted by N-PLS and identified by GC × GC-TOFMS were confirmed using quantitative structure-activity relationship (QSAR) estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.