Abstract

Quantitation of chromophore-free analytes is always a challenge. To this purpose, derivatization of the analyte constitutes a common strategy, leading to a product with a strong signal. In the current study, a novel xanthone analogue was utilized for the first time for the derivatization of pregabalin, a model analyte with a primary amine moiety that lacks a chromophore. The fact that only the xanthene-based derivative, formed after the derivatization reaction fluoresces, enables avoiding its chromatographic separation from the reagent and thus reducing the analysis time of a series of samples in 1–2 min via a plate reader. The reaction conditions were optimized via a central composite design (CCD), with fluorescence signal as the measure of the yield. The following factors that affect the derivatization reaction were chosen: (a) temperature, (b) reaction time, and (c) triethylamine solution volume used to drive the reaction to completion. After the identification of the optimal conditions, the method was validated according to ICH guidelines, using a fluorescence plate reader for signal measurement (λex = 540, λem = 615 nm). Finally, the newly developed high-throughput method was applied to the determination of drug content in pregabalin bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.