Abstract

Human defensins are natural peptide antibiotics. On the basis of the position and bonding of six conserved cysteine residues, they are divided into two families, designated alpha- and beta-defensins. Human alpha-defensins are expressed predominantly in neutrophils (human neutrophil peptides (HNP) 1-4) or intestinal Paneth cells (human defensins (HD) 5 and 6). Although alpha-defensins have been implicated in the pathogenesis of inflammatory bowel disease, their immunomodulatory functions are poorly understood. In the present study, HNP-1, HNP-3, and HD5 were found to be potent chemotaxins for macrophages but not dendritic cells using Galphai proteins and MAPK as signal transducers. Alpha-defensins were also chemoattractive for the human mast cell line HMC-1 but lacked, in contrast to beta-defensins, the ability to induce intracellular calcium fluxes. Furthermore, HNP-1, HNP-3, and HD5 comparably mobilized naive as well as memory T lymphocytes. Using the protein kinase C (PKC) inhibitors GF109 and Gö6976, we observed a PKC-independent functional desensitization to occur between human alpha-defensins, which suggests a common receptor for HNP-1, HNP-3, and HD5 on immune cells. This alpha-defensin receptor was subject to heterologous desensitization by the PKC activator PMA and to PKC-dependent cross-desensitization by human beta-defensins. Conversely, alpha-defensins desensitized beta-defensin-mediated migration of immune cells in a PKC-dependent manner, suggesting unique receptors for both defensin families. Taken together, our observations indicate that chemoattraction of macrophages, T lymphocytes, and mast cells represents an immunomodulatory function which is evolutionarily conserved within the human alpha-defensin family and tightly regulated by beta-defensins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.