Abstract

Farnesyl-protein transferase (FPTase) is an enzyme responsible for the farnesylation of Ras protein. Farnesylation is required for cell-transforming activity in several tumor-types, and therefore, inhibition of FPTase activity may be a potential target for anticancer drugs. Our continued search for novel inhibitors led to the isolation of a number of bicyclic resorcinaldehyde cyclohexanone derivatives named here cylindrols A(1) to A(4), cylindrols B and B(1), and a number of known compounds, from Cylindrocarpon lucidum. The compounds were isolated by bioassay-guided separation using Sephadex LH-20, silica gel, and reverse phase HPLC. Structures were elucidated by extensive application of 2D NMR and X-ray crystallography. The determination of absolute stereochemistry was accomplished by CD measurements. Chemical transformations of the most abundant compound resulted in a number of key derivatives which were critical for the evaluation of structure activity relationship. These compounds are members of ascochlorin family and showed a wide range of inhibitory activity (0.7 &mgr;M to >140 &mgr;M) against FPTase. The FPTase activity was noncompetitive with respect to both substrates. Isolation, structures, chemical transformations, and FPTase activity are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.