Abstract
Direct pumping and enhanced recovery of coal tar and creosote dense, non-aqueous phase liquids (DNAPLs) from the subsurface have had mixed results because these DNAPLs are viscous fluids that can potentially alter aquifer wettability. To improve the inefficiencies associated with waterflooding, the research presented here considered the use of a polymer solution that can be added to the injected flood solution to increase the viscosity and decrease the velocity of the flooding solution. Results from one-dimensional, vertically oriented laboratory column experiments that evaluate the recovery of coal-derived DNAPL with both water and polymer flooding solutions are presented. The final DNAPL saturation remaining in the column was assessed in water and oil-wet systems for three viscous DNAPLs. Adding polymer to increase the aqueous solution viscosity did not have a significant impact in water-wet systems. A final DNAPL saturation of approximately 19% was achieved for both water and polymer floods. In contrast, the addition of polymer significantly improved recovery in oil-wet systems. The final saturation was over 40% in oil-wet systems after waterflooding, but approximately 19% with a polymer flushing solution. Although the final saturation produced with polymer flooding was similar between the oil- and water-wet systems, differences in the relative permeability and distribution of DNAPL in the porous matrix caused the DNAPL recovery to be much slower in the oil-wet system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.