Abstract

Although alkanolamines have been systematically utilized for CO2 capture, intensive research efforts are still required to ultimately design more efficient CO2 sorbents with appropriate sorption characteristics. In this article, we have explored a series of diamine-tetraamido macrocyclic molecules with different organic linkers, namely, pyridine, phenylene, pyrrole, furan, and thiophene, for the titled purpose using quantum chemical calculations. The optimized structures of the sequestration reaction revealed the formation of a carbamate anion within the macrocyclic cavity that was stabilized through several intramolecular interactions compared to parent amines. The reaction thermodynamics indicated that the macrocyclic compounds with pyridine, pyrrole and furan can effectively capture CO2. The results highlight the potential application of macrocyclic structures as efficient CO2 capturing agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.