Abstract

The fabrication of a localized surface plasmon resonance nanosensor in a chip based format that utilizes Au nanorods (GNRs) as the optical transducer were systematically studied. (3-mercaptopropyl)trimethoxysilane (MPTMS) modified glass substrate offers GNR deposition with maximal sensitivity to local refractive index changes, which subsequently results in better optical recognition of receptor–analyte binding. Kinetics governing the mass transport and chemisorption of nanorods from bulk to solid surface can be dynamically controlled in a predictable fashion. We demonstrate that slight aggregation induced by a low ionic strength (5mM NaCl) can facilitate the nanorod assembly to result in a dense, well-distributed surface monolayer. In high ionic media (e.g. 40–80mM), anions present electrostatically bind with the positively charged cetyltrimethylammonium bromide (CTAB) surrounding nanorod surfaces, thereby leading to instability with heavy aggregation in solution. However, once chemically bound on silanized substrates, the nanorods exhibit excellent stability in physiological buffer where high amount of ionic species are present. The fundamental study is followed by demonstration of a practical application of the fabricated biochip in label-free detection based on GNR wavelength shift of the longitudinal palsmon maxima as the optical signature of human IgG model detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.