Abstract
The coalescence of single-walled nanotubes is studied in situ under electron irradiation at high temperature in a transmission electron microscope. The merging process is investigated at the atomic level, using tight-binding molecular dynamics and Monte Carlo simulations. Vacancies induce coalescence via a zipper-like mechanism, imposing a continuous reorganization of atoms on individual tube lattices along adjacent tubes. Other topological defects induce the polymerization of tubes. Coalescence seems to be restricted to tubes with the same chirality, explaining the low frequency of occurrence of this event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.