Abstract

A bead-based hybridization assay was developed for detection of traces of E. coli genomic DNA (gDNA) present in purified plasmid DNA (pDNA) samples. Standards of gDNA and pDNA samples were sheared by sonication and adsorbed onto aminopropyl controlled pore glass (CPG) particles (130 microm). A preliminary study was conducted to optimize the amount of DNA adsorbed on the particles. Results indicated that maximum attachment efficiency was obtained by adsorbing DNA for 2 h in 0.2 x SSC, pH 5.7. The DNA-bound particles were hybridized overnight with a 181-bp digoxigenin-labeled probe, specific for gDNA. Following a chemiluminescent detection protocol, signal intensities of the standards were plotted as a function of initial gDNA concentration. The calculated detection limit (LOD) was 1.4 pM of gDNA. The assay was able to detect gDNA in pure plasmid preparations at the 1% level even in the presence of 1,000-fold excess of noncomplementary target. Hybridization results were compared with a quantitative real-time PCR assay. Both methods afforded similar accurate results at the 95% confidence level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.