Abstract
During space missions, real-time monitoring of astronauts’ health status is of crucial importance and therefore there is a strong demand for simple analytical devices that astronauts can use to perform clinical chemistry analyses directly onboard.As part of the “IN SITU Bioanalysis” project, we designed a biosensor for analysing salivary levels of cortisol in astronauts, a marker of chronic stress. The biosensor is based on the Lateral Flow Immunoassay (LFIA) approach coupled with chemiluminescence (CL) detection and comprises a 3D-printed plastic cartridge containing a sealed fluidic element with the LFIA strip, in which the flow of sample and reagents is activated by pressing buttons on the cartridge and sustained by exploiting capillary forces. For measurement, the photon emission is imaged employing a CL reader based on an ultrasensitive cooled charge-coupled device (CCD) camera.The payload was designed to operate in microgravity and to withstand mechanical stress, such as take-off vibrations, and onboard depressurization events, while the microfluidics was developed considering alterations of physical phenomena occurring in microgravity, such as bubble formation, surface wettability and liquid evaporation. The biosensor, which was successfully used by the Italian astronaut Paolo Nespoli during the VITA mission (July-December 2017), demonstrated the feasibility of performing sensitive LFIA analysis of salivary cortisol down to 0.4 ng/mL directly onboard the International Space Station. It could be easily adapted for the analysis of other clinical biomarkers, thus enabling the early diagnosis of diseases and the timely activation of appropriate countermeasures.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.