Abstract

With the aim of improving the response in magnetic hyperthermia treatments and other biomedical applications, a nanoparticle system based on nickel ferrites has been investigated. Monodisperse ferrite nanoparticles with different proportions of Ni2+ ions and sizes have been produced by an optimized synthesis based on the thermal decomposition method and the seed-growth technique. All samples were chemically and structurally characterized by different methods, and the magnetic behavior has been analyzed by means of field and temperature dependent magnetization measurements and electronic magnetic resonance. It has been proved that low proportions of Ni2+ cation in the structure favors high saturation magnetization values and a reduction of the magnetic anisotropy constant. The optimized nanoparticles were transferred to water. Such nanoparticles are innocuous at concentrations up to 0.5 mg/mL and are convenient MRI contrast agents. Those samples with lower percentages of Ni2+ atoms and bigger particle size...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.