Abstract

The aim of this study is to improve the mechanical properties of glasses by the chemical strengthening method via the ion-exchange technique. For this purpose, KNO3 salt baths were utilized for commercial soda-lime glasses. The diffusion-controlled strengthening mechanism is based on creating the compressive stress on the surface of glass by displacing the larger potassium ions with sodium ions. SEM-EDS line scan and XRF analysis, four-point bending, and Vickers hardness tests were performed for the structural and mechanical characterization of ion-exchanged glasses. The optimization of parameters led to a treatment duration of 24 hours at 400°C, resulting in a penetration depth of K+ ions reaching 85 µm. After ion exchange process, the improvement in the hardness, fracture toughness as well as bending strength values ​​of the glasses was observed. The strengthened glasses exhibited notable enhancements in mechanical properties, specifically, hardness increased from 517 HV to 612 HV, and the fracture toughness increased to 3.14 MPa.m1/2 compared to the untreated glass, which displayed the fracture toughness of 1.09 MPa.m1/2. Furthermore, the bending strength of treated specimens significantly improved to 421.6 MPa, representing a five-fold increase over the untreated sample's bending strength of 79 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.