Abstract

To achieve optimal performance in a conjugated polymer-based electrochemical device, i.e. for a supercapacitor to reach full depth of discharge or for an electrochromic device (ECD) to achieve maximum contrast, the two electrodes must be in different oxidation states when the device is assembled. Here, we evaluate the use of chemical oxidation as a scalable postprocessing method to adjust the redox state of polymer-coated electrodes. We evaluate how the extent of oxidation depends on both the redox properties of the conjugated polymer and on the choice of chemical oxidant, and how these parameters affect the functionality of the film. Comparing Ag(I) and Fe(III) oxidants, we find that it is not the oxidizing power that determines the extent of doping but rather the redox potentials of the polymers, with the more easily oxidized polymers doping to a higher extent. Because the polarity and surface energy of the polymer changes upon oxidation, we also show how a phosphonic acid surface pre-treatment improves interfacial adhesion between the polymer and a transparent oxide electrode (ITO). Finally, as a proof of principle, we demonstrate how chemical oxidation of the organic counter electrode a minimally color changing dioxypyrrole polymer enhances the device contrast of an ECD, confirming that this approach is a promising route toward high-throughput manufacturing of ECDs and other polymer-based electrochemical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.