Abstract

Abstract Quantitative determination of the degree of chemical weathering of rocks is a fundamental task in environmental and engineering geology, and many weathering indices based on whole-rock chemistry have been proposed. However, most classical indices are of limited application to granitoids in a wide area, because these lithotypes generally exhibit wide chemical variation arising from their petrogenesis. The chemical evolution produced during rock weathering, therefore, overprints pre-existing magmatic chemical variation. This problem can cause many classical weathering indices to yield misleading results. This study proposes a method that compensates for the influence of petrogenesis on calculation of the weathering index. The method is based on a bivariate plot of the magmatic chemical variation (MCV) in granitoids, and the degree of chemical weathering (DCW). The MCV axis must be based on an element that reflects magmatic processes and is also relatively immobile during rock weathering. In this study TiO 2 contents are utilized for the MCV. The DCW axis is fundamentally defined by the ratios of more-mobile to less-mobile elements during weathering, and hence many classical indices can be applied. The improved value of the degree of chemical weathering (DCW i ) for a weathered rock is derived by: DCW i = s × ( MCV CV - MCV 1 ) + DCW 1 where MCV 1 is the measured composition (e.g. TiO 2 content) of the weathered rock. DCW 1 denotes the ratios of more-mobile to less-mobile elements of the weathered rock. The “s” parameter is the slope of the least square linear regression for fresh granitoids in the MCV–DCW relationship. MCV CV is a correction factor which is given by the average point on the MCV axis (e.g. average TiO 2 ) of the fresh rocks. This method is useful for evaluating the degree of weathering of various granitoids, and enhances the practical application of many weathering indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.