Abstract

Transport of copper(II) ions through bulk liquid membranes is studied in various experimental conditions. The results obtained are analyzed by using the concepts and methods of chemical kinetics. This approach allowed kinetic equations to be established which are sufficiently general to account for a large variety of transport kinetics (steady or nonsteady state, first or zeroth order, diffusion or reaction controlled, reversible or irreversible), to identify clearly the rate-determining steps, and to propose a detailed mechanism at the molecular level. The important role played by the interfaces is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.