Abstract

In this brief report, we show that the three different chemical hardness definitions developed in the framework of the temperature-dependent density functional theory-namely, the electronic, the thermodynamic, and the Helmholtz hardnesses-imply both the hard and soft acids and bases (HSAB) principle and the maximum hardness (MH) principle. These hardnesses are identified as the second derivative of a thermodynamic state function and avoid the somewhat arbitrary approach, based on the parabolic interpolation of the energy versus electron number, that is normally used to justify these principles. This not only leads to a more mathematically sound justification of the HSAB and MH principles in the low-temperature limit but also establishes that the HSAB and the MH principles hold at any temperature of chemical relevance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.