Abstract

Ambient PM2.5 samples were collected in the urban area of Taian in China in August–September and November, 2014. The chemical compositions and emission sources of PM2.5 were analyzed. The results indicated that the mean concentration of PM2.5 reached 70.8μg/m3 during the non-heating period, and water soluble inorganic ions (WSIIs), carbonaceous materials, including elemental carbon (EC) and organic carbon (OC); and elements contributed 43.80%, 10.34% and 17.36%, respectively, to PM2.5. The mean concentrations of WSIIs at three sampling sites decreased in the same order: SO42−>NH4+>NO3−>Cl− during the non-heating period. NO3− and NH4+, SO42− and NH4+, showed extremely significant positive-correlations (r=0.79, 0.54; P<0.01). The variability of OC was larger than the variability of EC during the non-heating period. The high concentration of secondary organic carbon (SOC) could reduce correlation-level between the OC and EC. Moreover, the percentages and concentrations of the total detected elements (TDE) increased significantly, ranging from August–September to November (P<0.01). Major sources of PM2.5 identified from positive matrix factorization (PMF) model and enrichment factors (EFs) included secondary aerosol, coal combustion, metal manufacturing, soil dust/resuspended dust/construction dust and vehicle exhaust/biomass burning, which contributed 27.47%, 17.94%, 19.06%, 9.41% and 16.65%, respectively, to PM2.5. The backward trajectory analysis identified three transport pathways that originated from Mongolia (12% of the total trajectories), Inner Mongolia (2%), and southeast of Shandong Province (86%), and the potential source contribution function (PSCF) model identified southeast of Shandong Province was mainly a potential source-area that affected air quality in Taian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.