Abstract
Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore. Nor is the neighboring Khibiny complex despite a bulk content of 531 ppm of Zr. Khibiny only has interstitial and anhedral EGM. The evolution of the Lovozero magma is recorded in the compositions EGM up through a stratigraphy of 2400 m in Phase II and III of the complex, and distinct in elements like rare earth elements (REE), Sr, Ba, Th, U, Rb, Mn, Fe. The compositional evolution reflects primarily fractional crystallization processes within the magma chamber itself in combination with convective magma flow and layering by precipitation of minerals with different settling velocities. The suggested mechanism for the formation of the EGM deposits is flotation of very small, suspended EGM crystals in the convective magma and concentration below the roof of the magma chamber. Phase III EGM is enriched in total REE (1.3%) and in HREE (Ce/Yt = 8.8) and constitutes a world class deposit of REE in the million tons of Phase III eudialyte lujavrites.
Highlights
High-field strength elements (HFSE) including the rare earth elements (REE) are strategic and critical for high-tech industry and green technologies
Phase III Eudialyte-Group Mineral (EGM) is enriched in total REE (1.3%) and in heavy rare earths elements (HREE) (Ce/Yt = 8.8) and constitutes a world class deposit of REE
Eudialyte (EGM) of the Lovozero complex is enriched in HREE
Summary
High-field strength elements (HFSE) including the rare earth elements (REE) are strategic and critical for high-tech industry and green technologies. Their consumption and economic importance is progressively growing up. A very different resource for HFSE (e.g., Zr, Hf, Nb, Ta, REE) is large-volume alkaline syenitic complexes rich in Eudialyte-Group Mineral (EGM) and other. Minerals 2020, 10, 1036 of HFSE resources in large alkaline complexes in order to define more effective exploration criteria for EGM-rich magmatic systems. EGMs are complex zirconium silicates and typomorphic [1,2,3,4] for highly evolved agpaitic alkaline complexes. Zircon is the typomorphic zirconium mineral in lesser alkaline miaskitic systems with an agpaitic index below 1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.