Abstract

Genus Corydalis is a rich source of isoquinoline alkaloids reported to having potential bioactivities. Corydalis chaerophylla collected from Nepal at an altitude of 2400-4800 m was extracted using hexane, methanol and chloroform as solvents. The resulting hexane, methanol and chloroform extracts were subjected to LC-DAD-MSn analysis to yield fifteen different alkaloids. To assess any potential pharmacological properties, antimicrobial activity against two Gram-positive, two Gram-negative bacterial strains and one fungal strain was assessed, revealing significant inhibitive action of the methanol and chloroform extracts. Of the extracts obtained using chloroform contained the highest content of phenolic compounds at 113 mg GAE/g, while the highest total flavonoid content was found for the hexane extract with a value of 46.45 mg QE/g. The chloroform extract also exhibited a considerable antioxidant activity at IC50 value, 261.5±3 μg/mL, for the DPPH assay. Conversely, the methanol extract exhibited the highest LC50 value for Brine Shrimp cytotoxicity at 196±3 μg/mL being least potential for the test. The methanol extract was found to be the most active against α-amylase inhibition with an IC50 of 51.52±2 μg/mL. In an in vivo acute oral toxicity study against mice, methanol and chloroform extracts presented harmful effects with 1000.36 mg/kg BW and 515 mg/kg BW for LD50 , respectively. By analyzing all the results of the solvents used, the chloroform extract was found to be the most active, a feature that will be used in future isolation procedures and other pharmacological tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.