Abstract

Salvia miltiorrhiza roots (SMRs), the main component of cell wall from the residual waste extraction, differ depending on the forming ways of monosaccharides. The extraction from 8% sodium hydroxide solution (H-8) was characterized by gel permeation chromatography (GPC), monosaccharide composition, Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) spectroscopy. The structure model of hemicellulose-based polysaccharides (HBPs) was derived by combining one-dimensional and two-dimensional NMR. Monosaccharides difference and correlation were performed by partial least square analysis (PLS). Seven H-8s exhibited optimal inhibitory activities, which varied based on different sources of Danshen. The backbone structure indicated that 4-β-D-Xylp served as the main chain connected by 3-α-L-Araf or 5-α-L-Araf-1, 4-β-D-Galp, and β-D-Glcp branch, as well as α-L-Rhap, α-D-GalpA and α-D-GlcpA fragments. The variation of HBPs in terms of the structure and bioactivity of SMRs correlated with different cultivation sites can be a new approach to optimize and utilize the medical materials by chemical and biological aspects of natural macromolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.