Abstract

Efficient Near UV excited materials (350<λ<400nm) responding with green line emission are sparse in comparison to higher energy UV excited emitters (λ<350nm), while corresponding red line emitters are more abundant, albeit typically also restricted to excitation wavelengths below 400nm. This situation is disadvantageous for several important actual and potential applications. Among these, excitation with high power UV-LEDs and laser diodes are of particular interest. Here we present results on green emitting YBO3:Ce, Tb, which can be excited with 370–380nm radiation at quantum efficiencies of up to 60% and decay times in excess of 2ms. Moreover, as powderous phosphors typically require stable matrices to be hosted in, we investigated low melting, lead- and fluoride-free glasses for their capability to accommodate the phosphor and yet retain its optical properties. In these, we even observed an increase of the quantum efficiencies of up to 70% at decay times approaching 3ms. Finally, we characterized the thermal quenching behavior, which showed a clear advantage of the phosphors in glassy matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.