Abstract

Although the metabolic networks of the three domains of life consist of different constituents and metabolic pathways, they exhibit the same scale-free organization. This phenomenon has been hypothetically explained by preferential attachment principle that the new-recruited metabolites attach preferentially to those that are already well connected. However, since metabolites are usually small molecules and metabolic processes are basically chemical reactions, we speculate that the metabolic network organization may have a chemical basis. In this paper, chemoinformatic analyses on metabolic networks of Kyoto Encyclopedia of Genes and Genomes (KEGG), Escherichia coli and Saccharomyces cerevisiae were performed. It was found that there exist qualitative and quantitative correlations between network topology and chemical properties of metabolites. The metabolites with larger degrees of connectivity (hubs) are of relatively stronger polarity. This suggests that metabolic networks are chemically organized to a certain extent, which was further elucidated in terms of high concentrations required by metabolic hubs to drive a variety of reactions. This finding not only provides a chemical explanation to the preferential attachment principle for metabolic network expansion, but also has important implications for metabolic network design and metabolite concentration prediction.

Highlights

  • One of the most intriguing findings in systems biology is that despite the varied constituents and metabolic pathways of three domains of life, their metabolic networks exhibit the same scalefree organization

  • Since most metabolites are small molecules and metabolic processes are basically chemical reactions, we speculate that the metabolic network organization may have a chemical basis, which stimulated our interest to address these issues by combining bioinformatics and chemoinformatics

  • The metabolic networks of the three domains of life exhibit the same scale-free organization, which has been hypothetically explained in terms of preferential attachment principle

Read more

Summary

Introduction

One of the most intriguing findings in systems biology is that despite the varied constituents and metabolic pathways of three domains of life, their metabolic networks exhibit the same scalefree organization. The scale-free organization of metabolic networks has been hypothetically explained in terms of evolution that the newrecruited metabolite members attach preferentially to those that are already well connected (rich get richer, known as preferential attachment principle) [2,3,4]. This implies that the metabolic network hubs originated relatively earlier than others in evolutionary history [5]. Since most metabolites are small molecules and metabolic processes are basically chemical reactions, we speculate that the metabolic network organization may have a chemical basis, which stimulated our interest to address these issues by combining bioinformatics and chemoinformatics.

Author Summary
Findings
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.