Abstract
Sodium-conducting sulfide glasses are promising materials for the next generation of solid-state batteries. Deep insight into the glass structure is required to ensure a functional design and tailoring of vitreous alloys for energy applications. Using pulsed neutron diffraction supported by first-principles molecular dynamics, we show a structural diversity of Na2S-As2S3 sodium thioarsenate glasses, consisting of long corner-sharing (CS) pyramidal chains CS-(AsSS2/2)k, small AspSq rings (p + q ≤ 11), mixed corner- and edge-sharing oligomers, edge-sharing (ES) dimers ES-As2S4, and isolated (ISO) pyramids ISO-AsS3, entirely or partially connected by sodium species. Polysulfide S-S bridges and structural units with homopolar As-As bonds complete the glass structure, which is basically different from structural motifs predicted by the equilibrium phase diagram. In contrast to superionic silver and sodium sulfide glasses, characterized by a significant population of isolated sulfur species Siso (0.20 < Siso/Stot < 0.28), that is, sulfur connected to only mobile cations M+ with a usual M/Siso stoichiometry of 2, poorly conducting Na2S-As2S3 alloys exhibit a modest Siso fraction of 6.2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.