Abstract

Hexadecyltrimethylammonium (HDTMA)-modified montmorillonite (HMM) has recently been recognized as a potential sorbentto remove organic contaminants from environmental systems. Potential applications of this material highly depend on the efficiency of regenerating contaminant-sorbing HMM. In this study, we investigated a chemical (NaOH solution) and a biological (yeast Pityrosporum sp.) method to regenerate phenol-sorbing HMM. Our results showed that the sorption coefficient of phenol to HMM is not a linear function of the ratio of the substitution of HDTMA in HMM. Chemical regeneration of HMMs (0-0.7 times of its cation exchange capacity (CEC)) proved the existence of a phenol residual amount of about 3 mg x g(-1) in the HMMs tested when aqueous pH is maintained above 11. In addition, the obvious deductions in the sorption capacity of the chemically regenerated HMMs were observed after four cycles of sorption-regeneration. However, the sorption capacities of intermediate substituted HMMs (0.3-0.7 CEC) can be completely restored by bioregeneration with yeast for extended cycles of reuse. The results imply that the bioregeneration method with yeast could be a promising technique for in-situ bioremediation of phenol-contaminated groundwater in the subsurface or for treatment of phenol containing wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.